版权说明 操作指南
首页 > 成果 > 详情

Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
He, Yu;Ning, ZiLan;Zhu, XingHui;Zhang, YinQiong;Liu, ChunHai;...
通讯作者:
Zhang, HY;Yuan, ZM
作者机构:
[Zhang, HongYan; Zhu, XingHui; Zhang, HY; Ning, ZiLan; Zhang, YinQiong; He, Yu; Jiang, SiWei] Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China.
[Yuan, ZM; Yuan, ZheMing; Liu, ChunHai] Hunan Agr Univ, Coll Plant Protect, Hunan Engn & Technol Res Ctr Agr Big Data Anal & D, Changsha 410128, Peoples R China.
通讯机构:
[Yuan, ZM ; Zhang, HY ] H
Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China.
Hunan Agr Univ, Coll Plant Protect, Hunan Engn & Technol Res Ctr Agr Big Data Anal & D, Changsha 410128, Peoples R China.
语种:
英文
关键词:
Plant;lncRNA-miRNA interaction;Graph neural network;Heterogeneous network;Counterfactual link
期刊:
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
ISSN:
1913-2751
年:
2024
页码:
1-13
基金类别:
This work was supported by the Natural Science Foundation of Hunan Province (2021JJ30351) and Postgraduate Scientific Research Innovation Project of Hunan Province (CX20240667).
机构署名:
本校为第一且通讯机构
院系归属:
植物保护学院
摘要:
Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robust...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com