摘要:
Overexpression of OsSTP1 enhances the non-structural carbohydrate remobilization in the source, starch accumulation in grains, and the transportation of carbohydrates from source to sink during the filling stage. The sugar transporter protein (STP) is the best-characterized subfamily of the monosaccharide transporter (MST) family and plays critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating rice yield is poorly understood. In this study, we report that compared with Taipei 309, overexpression of OsSTP1 can achieve higher rice yield. We demonstrate that OsSTP1 mRNA levels are higher than those of the other seven STPs in mixed samples of leaf sheaths, stems, and nodes at 12days after pollination (DAP). OsSTP1 is prominently expressed in the leaf sheaths, stems, and nodes at the grain filling stage. Subcellular localization analysis revealed that OsSTP1 is localized in the plasma membrane. Overexpression of OsSTP1 increased the activities of amylase (AMY) and sucrose phosphate synthase (SPS) in mixed samples of leaf sheaths, stems, and nodes at 12 DAP, the sucrose content of the phloem exudate, and accumulation of soluble sugars and starch in panicles, ultimately increasing seed-setting rates and grain yields in the Taipei 309 cultivar. These findings indicate that overexpression of OsSTP1 can improve grain yield by synergistically promoting non-structural carbohydrate (NSC) remobilization and transportation.
摘要:
Spirulina ( Arthrospira ) has been extensively applied in CO 2 biofixation, wastewater purification, and value-added bioproducts preparation. Light availability plays a pivotal role in Spirulina photoautotrophic cultivation, which is primary determined by characteristics of incident light and distribution of light within photobioreactors (PBRs). To clarify the role of light in Spirulina photoautotrophic cultivation, this review first analyzes the processes of light delivery and conversion in suspended PBRs. Then, effects of key light characteristics, including light intensity, spectrum, and photoperiod, on Spirulina growth and intracellular biochemical components synthesis are comprehensively summarized. Recent advancements in innovative PBR designs aimed at enhancing light utilization efficiency and promoting Spirulina growth are also highlighted. Finally, potential future research directions in the field of Spirulina photoautotrophic cultivation are outlined. Overall, this work provides a theoretical foundation and technical guidance for improving Spirulina production and specific target products synthesis from prespectives of light conditions regulation and PBRs design.
Spirulina ( Arthrospira ) has been extensively applied in CO 2 biofixation, wastewater purification, and value-added bioproducts preparation. Light availability plays a pivotal role in Spirulina photoautotrophic cultivation, which is primary determined by characteristics of incident light and distribution of light within photobioreactors (PBRs). To clarify the role of light in Spirulina photoautotrophic cultivation, this review first analyzes the processes of light delivery and conversion in suspended PBRs. Then, effects of key light characteristics, including light intensity, spectrum, and photoperiod, on Spirulina growth and intracellular biochemical components synthesis are comprehensively summarized. Recent advancements in innovative PBR designs aimed at enhancing light utilization efficiency and promoting Spirulina growth are also highlighted. Finally, potential future research directions in the field of Spirulina photoautotrophic cultivation are outlined. Overall, this work provides a theoretical foundation and technical guidance for improving Spirulina production and specific target products synthesis from prespectives of light conditions regulation and PBRs design.
期刊:
Food Research International,2025年:116214 ISSN:0963-9969
通讯作者:
Lin Liu<&wdkj&>Zhonghua Liu<&wdkj&>Mingzhi Zhu
作者机构:
[Jiaxin Zhou; Yiqiao Zhao; Yilong Li; Jie Li; Jianan Huang; Zhonghua Liu; Mingzhi Zhu] Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China;[Lin Liu] The First Hospital of Hunan University of Chinese Medicine, Hunan 410128, PR China
通讯机构:
[Lin Liu] T;[Zhonghua Liu; Mingzhi Zhu] K;Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China<&wdkj&>The First Hospital of Hunan University of Chinese Medicine, Hunan 410128, PR China
摘要:
Depression is strongly linked to dysfunctions in the microbiota-gut-brain axis. Jasmine tea, a traditional Chinese beverage made by combining green tea with Jasminum sambac , has potential antidepressant effects. However, its potential to alleviate depression via modulation of the microbiota-gut-brain axis remains largely unstudied. In this study, we used a rat model of depression induced by chronic unpredictable mild stress (CUMS) to investigate the effects of jasmine tea extract (JT) on depression-related symptoms. Behavioral assessments, inflammatory marker analysis, hippocampal histology, and brain-derived neurotrophic factor (BDNF) expression assays demonstrated that JT alleviated depressive behaviors, reduced brain tissue damage, and restored cognitive function in CUMS-exposed rats. JT also significantly reduced intestinal levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and modulated oxidative stress markers (MDA, SOD, and CAT), suggesting a role in preserving intestinal integrity. Further, 16S rRNA sequencing revealed that JT shifted the gut microbiota composition in favor of beneficial bacteria such as Romboutsia , Blautia , and Monoglobus , while decreasing the abundance of potentially harmful bacteria, including Bifidobacterium , Clostridium_sensu_stricto_1 , and Escherichia-Shigella . Meanwhile, non-targeted and targeted metabolomics analyses showed that JT influenced key metabolic pathways involving tryptophan, short-chain fatty acids, and bile acids, helping to restore metabolic balance across various tissues (feces, colon, serum, and cerebral cortex) in the depressed rats. These findings indicate that JT may alleviate depression by modulating the microbiota-gut-brain axis, highlighting its potential as a dietary intervention for depression management.
Depression is strongly linked to dysfunctions in the microbiota-gut-brain axis. Jasmine tea, a traditional Chinese beverage made by combining green tea with Jasminum sambac , has potential antidepressant effects. However, its potential to alleviate depression via modulation of the microbiota-gut-brain axis remains largely unstudied. In this study, we used a rat model of depression induced by chronic unpredictable mild stress (CUMS) to investigate the effects of jasmine tea extract (JT) on depression-related symptoms. Behavioral assessments, inflammatory marker analysis, hippocampal histology, and brain-derived neurotrophic factor (BDNF) expression assays demonstrated that JT alleviated depressive behaviors, reduced brain tissue damage, and restored cognitive function in CUMS-exposed rats. JT also significantly reduced intestinal levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and modulated oxidative stress markers (MDA, SOD, and CAT), suggesting a role in preserving intestinal integrity. Further, 16S rRNA sequencing revealed that JT shifted the gut microbiota composition in favor of beneficial bacteria such as Romboutsia , Blautia , and Monoglobus , while decreasing the abundance of potentially harmful bacteria, including Bifidobacterium , Clostridium_sensu_stricto_1 , and Escherichia-Shigella . Meanwhile, non-targeted and targeted metabolomics analyses showed that JT influenced key metabolic pathways involving tryptophan, short-chain fatty acids, and bile acids, helping to restore metabolic balance across various tissues (feces, colon, serum, and cerebral cortex) in the depressed rats. These findings indicate that JT may alleviate depression by modulating the microbiota-gut-brain axis, highlighting its potential as a dietary intervention for depression management.
摘要:
Summer-autumn tea leaves are abundant, yet their utilization remains low. Our study enhances the quality and flavor of Golden Flower loose tea (GFLT) from fresh summer-autumn tea leaves by using a special “Golden Flower” fungus (strain ACF-2). The strain ACF-2, identified as Aspergillus cristatus with yellow cleistothecium and isolated from Fu Brick Tea, was characterized by colony morphology, microstructural analyses, and phylogenetic examination using a 3-gene dataset ( BenA , CaM , RPB2 ). Inoculation of raw dark tea products with A. cristatus led to a significant increase in tea water extract and a reduction in tea polyphenols, soluble sugars, flavonoids, and total amino acids, thereby enhancing the quality and flavor of GFLT. HS-SPME-GC-MS analysis of GFLT aroma revealed that A. cristatus substantially improved the tea’s aroma profile. 9 volatile compounds—( Z )-jasmone I, β -cyclocitral, linalool oxide I, linalool, hexanal, 1-octen-3-ol, ( Z )-citral, citral, and methyl salicylate, were found to be significantly elevated in GFLT compared to the controls. Our findings provide both theoretical and practical insights into optimizing the utilization of summer-autumn tea leaves, identifying the “Golden Flower” fungus, and understanding its impact on GFLT quality. In summary, fermenting A. cristatus to produce GFLT may be a new channel to utilize summer-autumn tea.
Summer-autumn tea leaves are abundant, yet their utilization remains low. Our study enhances the quality and flavor of Golden Flower loose tea (GFLT) from fresh summer-autumn tea leaves by using a special “Golden Flower” fungus (strain ACF-2). The strain ACF-2, identified as Aspergillus cristatus with yellow cleistothecium and isolated from Fu Brick Tea, was characterized by colony morphology, microstructural analyses, and phylogenetic examination using a 3-gene dataset ( BenA , CaM , RPB2 ). Inoculation of raw dark tea products with A. cristatus led to a significant increase in tea water extract and a reduction in tea polyphenols, soluble sugars, flavonoids, and total amino acids, thereby enhancing the quality and flavor of GFLT. HS-SPME-GC-MS analysis of GFLT aroma revealed that A. cristatus substantially improved the tea’s aroma profile. 9 volatile compounds—( Z )-jasmone I, β -cyclocitral, linalool oxide I, linalool, hexanal, 1-octen-3-ol, ( Z )-citral, citral, and methyl salicylate, were found to be significantly elevated in GFLT compared to the controls. Our findings provide both theoretical and practical insights into optimizing the utilization of summer-autumn tea leaves, identifying the “Golden Flower” fungus, and understanding its impact on GFLT quality. In summary, fermenting A. cristatus to produce GFLT may be a new channel to utilize summer-autumn tea.
摘要:
Most hyperaccumulator and economic crops do not grow year-round, leading to limited remediation efficiency. Implementing year-round rotation patterns with known and potential hyperaccumulators or economic crops can improve remediation efficiency. This study evaluated the remediation efficiency and agricultural safety of 10 winter crops and 12 summer crops in field-scale trials. Sedum alfredii Hance (SA) and Cichorium intybus L. (CI) exhibited the highest cadmium (Cd) accumulation among winter crops, reducing soil Cd content by 12.1% and 10.4%, respectively. Helianthus annuus Linn. (HA) was the most effective summer crop, reducing soil Cd content by 3.7%. The vegetable oils of all oil crops were within safe heavy metal limits, whereas the edible parts of other economic crops exceeded Cd limits. A combination of the best winter and summer crops was chosen to comprehensively evaluate the remediation efficiency and economic benefits of three rotation patterns: SA + HA, CI + HA, and Linum usitatissimum L. (LU) + HA. SA + HA and CI + HA were more effective than LU + HA, reducing soil Cd by 12.5%, 8.9%, and 3.7%, respectively. The net profits were -27591.19, 749.50, and 3309.76 US$/ha, respectively. Overall, CI + HA demonstrated the highest combined capacity (comprehensive index = 1.79) for both remediation efficiency and economic benefits, achieving safe production and effective restoration of Cd-contaminated agricultural land. However, the accumulation of heavy metals in oilseed meals warrants further attention.
关键词:
key taxa;microbial community;pepper growth;synthetic microbial community
摘要:
Synthetic microbial community (SynCom) application is efficient in promoting crop yield and soil health. However, few studies have been conducted to enhance pepper growth via modulating rhizosphere microbial communities by SynCom application. This study aimed to investigate how SynCom inoculation at the seedling stage impacts pepper growth by modulating the rhizosphere microbiome using high-throughput sequencing technology. SynCom inoculation significantly increased shoot height, stem diameter, fresh weight, dry weight, chlorophyll content, leaf number, root vigor, root tips, total root length, and root-specific surface area of pepper by 20.9%, 36.33%, 68.84%, 64.34%, 29.65%, 27.78%, 117.42%, 35.4%, 21.52%, and 39.76%, respectively, relative to the control. The Chao index of the rhizosphere microbial community and Bray-Curtis dissimilarity of the fungal community significantly increased, while Bray-Curtis dissimilarity of the bacterial community significantly decreased by SynCom inoculation. The abundances of key taxa such as Scedosporium, Sordariomycetes, Pseudarthrobacter, norankSBR1031, and norankA4b significantly increased with SynCom inoculation, and positively correlated with indices of pepper growth. Our findings suggest that SynCom inoculation can effectively enhance pepper growth and regulate root morphology by regulating rhizosphere microbial communities and increasing key taxa abundance like Sordariomycetes and Pseudarthrobacter, thereby benefiting nutrient acquisition, resistance improvement, and pathogen resistance of crops to ensure sustainability.
摘要:
Objective: Spirometra mansoni is a crucial zoonotic parasite. Its larvae are more harmful than adult worms due to their ability to migrate through the host's tissues and organs. Therefore, it is necessary to establish an animal model of spargana for observing pathological changes and exploring diagnostic techniques. Methods: In this study, we infected Kunming mice and cats without any pathogens by feeding sparganum (with the scolex and neck) in order to understand the infection cycle of S. mansoni and explore the preservation host of sparganosis. The infection of S. mansoni was determined by fecal detection and enzyme-linked immunosorbent assay (ELISA). Results: In the model of cats, the eggs of S. mansoni were found in the feces ten days after the infection. The serum-specific IgG antibodies against S. mansoni were positive in experimental groups (mice and cats), and after sixty days, the S. mansoni worms isolated from experimental groups were collected. Conclusion: In conclusion, the experimental results show that mice and cats can be stably infected with S. mansoni through feeding sparganum (with the scolex and neck). The infection method of this study has the potential to establish a practical model for investigating the diagnostic process of S. mansoni, laying the groundwork for application and development. ELISA was used to diagnose mice and cats infected with sparganosis mansoni, providing a case for non-invasive identification of animal sparganosis.
通讯机构:
[Peng, JW; Tian, C ] H;Hunan Agr Univ, Changsha 410128, Peoples R China.
关键词:
Tea cultivar;Rhizosphere;Mycorrhizal colonization;Diversity;Catechin quality index
摘要:
The quality of green tea is influenced by soil microbes in addition to soil conditions and the Camellia sinensis cultivar. Arbuscular mycorrhizal (AM) fungi can significantly improve soil quality and crop productivity; however, the specific AM fungal groups that affect the catechin quality index (CQI) of green tea are not yet clear. In the present study, rhizosphere soil samples, root samples, and fresh tea leaves from six different Camellia sinensis cultivars in Hunan Province, China, were collected. The taxonomic diversity and community composition of AM fungi in the rhizosphere soil and roots were investigated using high-throughput Illumina amplicon sequencing technology, and the mycorrhizal colonization rate was assessed. The two main AM fungal genera in the Camellia sinensis roots and rhizosphere were Paraglomus and Glomus. A higher catechin quality index (HCQI) is correlated with greater accumulation of Paraglomus in the roots of Camellia sinensis. The tea cultivar and the available phosphorus content in the rhizosphere soil significantly affected the mycorrhizal colonization rate and the composition of the AM fungal community within the roots. The mycorrhizal colonization rate affected the catechin composition, consequently influencing the CQI of green tea. Furthermore, fluctuations in the proportional presence of Paraglomus and Glomus within the roots of Camellia sinensis notably affected the CQI. In summary, increased mycorrhizal colonization and increased prevalence of Paraglomus substantially increase the CQI of green tea. These findings have significant implications for the application of AM fungi in the production of high-quality green tea.
Arbuscular mycorrhizal (AM) influenced the catechin quality index (CQI) of green tea. Paraglomus and Glomus were the dominant AM fungal genera. Paraglomus contributed positively to the enhancement of CQI in green tea. Rhizospheric phosphorus levels markedly affected tea plant mycorrhizal colonization.
摘要:
Quantitatively descripting the gradation using equation has a great significance on the investigating of the optimal gradation and multi-scale effects for coarse-grained subgrade fillers. A new gradation equation for coarse-grained subgrade filler (CSF) was proposed according to the traditional fractal theory. Relationship between the shape of gradation curve and model parameters was analyzed, the curve shows sigmoid when
$$- \sqrt { - 2\alpha } < \beta < \sqrt { - 2\alpha }$$
, and the curve respects hyperbolic when
$$\beta> \sqrt { - 2\alpha }$$
. The values of model parameters when CSF is well-graded range were captured, i.e., β2 < 2.590α2 + 5.627α + 1.239 and α < 0. Applications of the new gradation equation in the scale effect and particle breakage were investigated and verified. Based on the traditional scaled methods, i.e., exclusion method, similar gradation method, equivalent substitution method and hybrid method, a new unified form of gradation scale formula was proposed. In addition, the new expressions for calculating breakage rate and disintegration ratio were established. Specifically, the particle breakage experiment for CSF using the large-scale triaxial test and the disintegration breakage experiment for red-bed soft rock under different dry–wet cycles were carried out to use and verify the correctness of these new expressions. Findings provides theoretical support for the study of gradation effects and multi-scale effects.
关键词:
Using the Web of Science database ( https://apps.webofknowledge.com );we performed a literature analysis on the effect sizes for rice yields and soil N in response to covering green manure. A total of 653 publications before August 31;2023 were selected;using the keywords “green manure”;“rice yield”;and “soil N” or “available N” or “NH 4 + -N”. The included publications had to meet three criteria: (1) winter fallow treatment must be included as a control in every publication;(2) no use of
摘要:
Building soil organic nitrogen (SON) pools and improving N cycling between soil and crops can reconcile the global need for increased food production and environmental sustainability. We combined a global database and a 40-year field experiment in South China to demonstrate the beneficial effects of traditional green manure on rice yield and soil N cycling in paddy ecosystems. Covering green manure increased rice yield by up to 24 % in China and by 25 % globally mainly due to activated microbial activity, increased SON cycling, and available N content, compared with winter fallow treatment. Soil catabolic processes, such as enzyme activities were stimulated, thus increasing the rate of gross protein depolymerization by 2.3–3.8 times. This led to an increase in the amount of active SON fractions, e.g. of hydrolyzable amino acid N by 32 %–44 %. Concurrently, green manure increased the rate of gross amino acid consumption by microorganisms by 1.1–2.0 times. One part of the N ingested by microorganisms was used for growth to increase microbial biomass N and subsequently dead residues, and the other part increased soil NH 4 + -N content through catabolism. Ultimately, the utilization of soil original N by rice plants was improved by 31 %–42 % under covering green manure treatments. This study provides an agricultural management strategy to improve soil N supply for crops by increasing organic N cycling in paddy ecosystems and thus saving mineral N fertilizer.
Building soil organic nitrogen (SON) pools and improving N cycling between soil and crops can reconcile the global need for increased food production and environmental sustainability. We combined a global database and a 40-year field experiment in South China to demonstrate the beneficial effects of traditional green manure on rice yield and soil N cycling in paddy ecosystems. Covering green manure increased rice yield by up to 24 % in China and by 25 % globally mainly due to activated microbial activity, increased SON cycling, and available N content, compared with winter fallow treatment. Soil catabolic processes, such as enzyme activities were stimulated, thus increasing the rate of gross protein depolymerization by 2.3–3.8 times. This led to an increase in the amount of active SON fractions, e.g. of hydrolyzable amino acid N by 32 %–44 %. Concurrently, green manure increased the rate of gross amino acid consumption by microorganisms by 1.1–2.0 times. One part of the N ingested by microorganisms was used for growth to increase microbial biomass N and subsequently dead residues, and the other part increased soil NH 4 + -N content through catabolism. Ultimately, the utilization of soil original N by rice plants was improved by 31 %–42 % under covering green manure treatments. This study provides an agricultural management strategy to improve soil N supply for crops by increasing organic N cycling in paddy ecosystems and thus saving mineral N fertilizer.
摘要:
Regenerated rice has the characteristics of dual harvest, labor-saving and cost-saving, which is of great significance for solving the global food problem. Hyperspectral image technology is one of the main methods to obtain vegetation canopy data on a large scale, which has the advantages of image and spectral information set in one, comprehensive information response, no need for pre-processing, non-polluting and non-destructive, etc. It mainly establishes a hyperspectral diagnostic model for crop yield through remote sensing data, assists in crop yield prediction, and finally uses Convolutional Neural Network methods for regression prediction. In this experiment, two main planting varieties of regenerated rice, Yongyou 4949 and Kuiyou 1610, were selected for the study in Hunan Province, and a hyperspectral instrument was used to capture the hyperspectral images of regenerated rice in the first and regeneration seasons as the metadata. Since Convolutional Neural Network has a strong feature extraction capability, a two-dimensional Convolutional Neural Network was used as the front-end regenerated rice spectral feature extractor, and an attention mechanism was added to enhance the attention learning of the model for hyperspectral images for subtle features. At the back end, the fully connected layer was used as the regression predictor for the yield of regenerated rice, and the parameters were fine-tuned during the training process to obtain a high robustness model suitable for the yield prediction of regenerated rice, which is of great significance for the realization of the yield increase and income of regenerated rice.
Regenerated rice has the characteristics of dual harvest, labor-saving and cost-saving, which is of great significance for solving the global food problem. Hyperspectral image technology is one of the main methods to obtain vegetation canopy data on a large scale, which has the advantages of image and spectral information set in one, comprehensive information response, no need for pre-processing, non-polluting and non-destructive, etc. It mainly establishes a hyperspectral diagnostic model for crop yield through remote sensing data, assists in crop yield prediction, and finally uses Convolutional Neural Network methods for regression prediction. In this experiment, two main planting varieties of regenerated rice, Yongyou 4949 and Kuiyou 1610, were selected for the study in Hunan Province, and a hyperspectral instrument was used to capture the hyperspectral images of regenerated rice in the first and regeneration seasons as the metadata. Since Convolutional Neural Network has a strong feature extraction capability, a two-dimensional Convolutional Neural Network was used as the front-end regenerated rice spectral feature extractor, and an attention mechanism was added to enhance the attention learning of the model for hyperspectral images for subtle features. At the back end, the fully connected layer was used as the regression predictor for the yield of regenerated rice, and the parameters were fine-tuned during the training process to obtain a high robustness model suitable for the yield prediction of regenerated rice, which is of great significance for the realization of the yield increase and income of regenerated rice.
关键词:
Urban expansion simulation;Compactness;Population density;Cellular automata;UECS;Western Africa
摘要:
Urban expansion has a significant impact on sustainable development in rapidly urbanizing areas. The changes in population density and spatial compactness during rapid urban expansion significantly impact sustainable development. However, current regional-scale urban simulation models are rarely incorporated into population density and spatial compactness. This study proposes an ANN-based method for predicting future population density in a region. A spatial simulation model for urban expansion that takes into account the population density and urban spatial compactness (UECS model) is proposed. The model integrates top-down compactness control with bottom-up spatial allocation mechanisms using a novel roulette approach. The top-down control, which involves setting the future population density and average proximity expansion index (APEI), exerts a macro-level influence on spatial compactness. In contrast, bottom-up CA and cell proximity expansion index (CPEI) change the spatial compactness in urban expansion at the micro level. The validation using Western Africa as the study area shows that the UECS model has good simulation performance and strong control of compactness. Finally, based on the UECS model, we simulate urban growth in Western Africa from 2020 to 2060 under five different compactness scenarios at a 300-m resolution. The result suggests that future urban expansion in Western Africa will vary significantly under different compactness scenarios. The proposed model provides a framework for simulating different levels of urban compactness, which enables us to explore the impacts of different strategies on urban development and sustainability and provides the basis for urban development decision support.
Urban expansion has a significant impact on sustainable development in rapidly urbanizing areas. The changes in population density and spatial compactness during rapid urban expansion significantly impact sustainable development. However, current regional-scale urban simulation models are rarely incorporated into population density and spatial compactness. This study proposes an ANN-based method for predicting future population density in a region. A spatial simulation model for urban expansion that takes into account the population density and urban spatial compactness (UECS model) is proposed. The model integrates top-down compactness control with bottom-up spatial allocation mechanisms using a novel roulette approach. The top-down control, which involves setting the future population density and average proximity expansion index (APEI), exerts a macro-level influence on spatial compactness. In contrast, bottom-up CA and cell proximity expansion index (CPEI) change the spatial compactness in urban expansion at the micro level. The validation using Western Africa as the study area shows that the UECS model has good simulation performance and strong control of compactness. Finally, based on the UECS model, we simulate urban growth in Western Africa from 2020 to 2060 under five different compactness scenarios at a 300-m resolution. The result suggests that future urban expansion in Western Africa will vary significantly under different compactness scenarios. The proposed model provides a framework for simulating different levels of urban compactness, which enables us to explore the impacts of different strategies on urban development and sustainability and provides the basis for urban development decision support.
作者机构:
[Liu, Zhi-Wei; Tang, Pan-Pan; Tan, Yi-Cheng; Liu, Tian-Le] College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China;[Liu, Xiu-Bin] College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China;[Liu, Chang; Cheng, Jun-Hu] School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China;[Aadil, Rana Muhammad] National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
通讯机构:
[Zhi-Wei Liu] C;College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
摘要:
The potential of cold plasma (CP) treatment to promote the formation of amyloid fibrils (AFs) of ovalbumin (OVA) was evaluated relative to acidic heat fibrillation condition (pH = 2, 85 °C). Results indicated CP exhibited significant potential for promoting the formation of AFs of OVA, as evidenced by higher Thioflavin T (ThT) fluorescence intensity of AFs for CP-treated OVA (POVA) during the fibrillation process compared to AFs for native OVA under acidic heating conditions (NOVA). Long, curved and worm-like fibrils of CP-treated OVA with 2 min (POVA-2), which were thicker (3 nm in height) and longer (majority length ranging from 300 nm to 400 nm), were observed after 8 h of fibrillation, while irregular, short, worm-like fibrils of NOVA were detected. Unlike NOVA, which was only hydrolyzed into small peptides, the backbone of POVA-2 was cleaved into small peptide fragments, accompanied by the generation of dityrosine cross-linked aggregation/oligomer during fibrillation process, as evidenced by SDS-PAGE and dityrosine analysis. The result of hydrophobic, sulfhydryl and disulfide bonds, and dityrosine analysis showed hydrophobic interaction and dityrosine cross-links could be the main force driving the assembly and stacking of cross-β structures, leading to the formation of organized fibrillar structures for POVA-2, while only hydrophobic interaction was involved for NOVA. Additionally, analyses of emulsifying ability (EAI) and stability (ESI) of NOVA and POVA-2 displayed that both EAI and ESI of them were significantly improved, with POVA-2 exhibiting superior EAI compared to NOVA. Therefore, this study demonstrated CP is a promising technique to promote the generation of protein amyloid fibrils in a more efficient manner.
The potential of cold plasma (CP) treatment to promote the formation of amyloid fibrils (AFs) of ovalbumin (OVA) was evaluated relative to acidic heat fibrillation condition (pH = 2, 85 °C). Results indicated CP exhibited significant potential for promoting the formation of AFs of OVA, as evidenced by higher Thioflavin T (ThT) fluorescence intensity of AFs for CP-treated OVA (POVA) during the fibrillation process compared to AFs for native OVA under acidic heating conditions (NOVA). Long, curved and worm-like fibrils of CP-treated OVA with 2 min (POVA-2), which were thicker (3 nm in height) and longer (majority length ranging from 300 nm to 400 nm), were observed after 8 h of fibrillation, while irregular, short, worm-like fibrils of NOVA were detected. Unlike NOVA, which was only hydrolyzed into small peptides, the backbone of POVA-2 was cleaved into small peptide fragments, accompanied by the generation of dityrosine cross-linked aggregation/oligomer during fibrillation process, as evidenced by SDS-PAGE and dityrosine analysis. The result of hydrophobic, sulfhydryl and disulfide bonds, and dityrosine analysis showed hydrophobic interaction and dityrosine cross-links could be the main force driving the assembly and stacking of cross-β structures, leading to the formation of organized fibrillar structures for POVA-2, while only hydrophobic interaction was involved for NOVA. Additionally, analyses of emulsifying ability (EAI) and stability (ESI) of NOVA and POVA-2 displayed that both EAI and ESI of them were significantly improved, with POVA-2 exhibiting superior EAI compared to NOVA. Therefore, this study demonstrated CP is a promising technique to promote the generation of protein amyloid fibrils in a more efficient manner.
通讯机构:
[Li, QM; Xia, HP ] H;Hunan Agr Univ, Coll Food Sci & Technol, 1 Nongda Rd, Changsha 410128, Hunan, Peoples R China.;Hunan Agr Univ, Hunan Rapeseed Oil Nutr Hlth & Deep Dev Engn Techn, 1 Nongda Rd, Changsha 410128, Hunan, Peoples R China.
关键词:
Acidic deep eutectic solvents;Phase transition;Waxy maize starch
摘要:
The effects of molar ratio and carboxylic acids' structure of deep eutectic solvents (DESs) on the treatment of waxy maize starch (WMS) were systematically investigated. FT-IR results of DESs discovered that shorter carbon chain acids exhibited stronger hydrogen bonds. Subsequently, DESs were utilized to treat WMS. Microscopy, DSC, and viscosity measurements indicated that the dissolution and gelatinization phase transitions of WMS occurred simultaneously in acid-DESs. Specifically, shorter carbon chains led to lower viscosity and more obvious dissolution. Notably, relatively high solubilities of 57.02 wt% (choline chloride/formic acid, CF) and 53.39 wt% (choline chloride/oxalic acid dihydrate, CO) were obtained for 6 h at 60 °C. Further characterization of regenerated WMS using SEM, XRD, FT-IR, and GPC showed that the granular and crystalline structures of WMS were disrupted, with a significant decrease in molecular weight. The extent of starch disruption/degradation increased as the acids' carbon chain decreased. Therefore, the treatment of WMS in acid-DESs was predominantly influenced by the length of the acids' carbon chain. Additionally, esterification reactions between WMS and carboxylic acids were detected in the CF and CO systems. These findings could provide a promising and efficient approach for starch treatment and structural analysis.
The effects of molar ratio and carboxylic acids' structure of deep eutectic solvents (DESs) on the treatment of waxy maize starch (WMS) were systematically investigated. FT-IR results of DESs discovered that shorter carbon chain acids exhibited stronger hydrogen bonds. Subsequently, DESs were utilized to treat WMS. Microscopy, DSC, and viscosity measurements indicated that the dissolution and gelatinization phase transitions of WMS occurred simultaneously in acid-DESs. Specifically, shorter carbon chains led to lower viscosity and more obvious dissolution. Notably, relatively high solubilities of 57.02 wt% (choline chloride/formic acid, CF) and 53.39 wt% (choline chloride/oxalic acid dihydrate, CO) were obtained for 6 h at 60 °C. Further characterization of regenerated WMS using SEM, XRD, FT-IR, and GPC showed that the granular and crystalline structures of WMS were disrupted, with a significant decrease in molecular weight. The extent of starch disruption/degradation increased as the acids' carbon chain decreased. Therefore, the treatment of WMS in acid-DESs was predominantly influenced by the length of the acids' carbon chain. Additionally, esterification reactions between WMS and carboxylic acids were detected in the CF and CO systems. These findings could provide a promising and efficient approach for starch treatment and structural analysis.
摘要:
Tungsten (W), a widely used yet understudied emerging contaminant, forms oxyanions in aqueous environments, distinguishing it from conventional heavy metals. While dissolved organic matter (DOM) demonstrates considerable potential for W binding, DOM-W interactions remain largely unexplored. Of particular significance, yet frequently overlooked, are the conformational changes in DOM during W binding processes. This study proposes a novel theoretical framework integrating superposition and charge transfer models to elucidate the complexity of these interactions. By combining spectroscopic techniques and photophysical models, we revealed that aromatic compounds containing 1–3 rings, especially monocyclic aromatic protein-like components, exhibit high affinity for W (logK=3.74–4.00). Phenolic hydroxyls served as primary binding sites for W, with aromatic rings facilitating binding through π interactions. Importantly, W binding to aromatic compounds induced conformational changes in DOM, transitioning from a loosely aggregated state to a more compact configuration. These changes facilitated W encapsulation within DOM through the synergistic effects of hydrophobic interactions, hydrogen/π-hydrogen bonding and π-stacking, potentially leading to stable trapping of W. Two-dimensional correlation spectroscopy analysis elucidated the sequential encapsulation process, involving phenolic, aromatic carboxylic/aliphatic carboxylic, polysaccharides, and aliphatics. The intricate behavior of DOM-W binding profoundly reshapes DOM's conformation, subtly yet significantly orchestrating W's binding affinity, environmental transport, and bioavailability in aquatic ecosystems.
Tungsten (W), a widely used yet understudied emerging contaminant, forms oxyanions in aqueous environments, distinguishing it from conventional heavy metals. While dissolved organic matter (DOM) demonstrates considerable potential for W binding, DOM-W interactions remain largely unexplored. Of particular significance, yet frequently overlooked, are the conformational changes in DOM during W binding processes. This study proposes a novel theoretical framework integrating superposition and charge transfer models to elucidate the complexity of these interactions. By combining spectroscopic techniques and photophysical models, we revealed that aromatic compounds containing 1–3 rings, especially monocyclic aromatic protein-like components, exhibit high affinity for W (logK=3.74–4.00). Phenolic hydroxyls served as primary binding sites for W, with aromatic rings facilitating binding through π interactions. Importantly, W binding to aromatic compounds induced conformational changes in DOM, transitioning from a loosely aggregated state to a more compact configuration. These changes facilitated W encapsulation within DOM through the synergistic effects of hydrophobic interactions, hydrogen/π-hydrogen bonding and π-stacking, potentially leading to stable trapping of W. Two-dimensional correlation spectroscopy analysis elucidated the sequential encapsulation process, involving phenolic, aromatic carboxylic/aliphatic carboxylic, polysaccharides, and aliphatics. The intricate behavior of DOM-W binding profoundly reshapes DOM's conformation, subtly yet significantly orchestrating W's binding affinity, environmental transport, and bioavailability in aquatic ecosystems.
摘要:
Low-acyl gellan gum (LA) is a typical cold- and Ca2+-set gelation polysaccharide and is widely used to improve the stability of yoghurt. Acid and endogenous calcium can induce the formation of skimmed milk (SM)/LA double gels. However, the effect of acidification temperature on the formation and physical properties of SM/LA double gels has not been elucidated. In this study, temperature above and below the LA transition temperature (38 °C) were used as acidification temperatures, which adjusted the gelation sequence of SM and LA. The LA gel prior to the SM gel formed at acidification temperature of 37 °C, exhibiting the highest WHC and G′ among all samples. Moreover, SM/LA-37 double gels showed two networks: one was a porous network and the other was a dense network. By contrast, SM/LA mixtures acidified at 42 °C formed double networks during the cooling stage, and the previously formed SM gel hindered the formation of the LA gel. Consequently, SM/LA-42 double gels showed lower WHC and G′ compared with SM/LA-37 double gels. Overall, gelation sequence substantially affected the physical properties of SM/LA double gels. Our findings provide basis for adopting optimal methods to improve yoghurt quality and revealing the gelation mechanism involved in SM/LA double gels.
Low-acyl gellan gum (LA) is a typical cold- and Ca2+-set gelation polysaccharide and is widely used to improve the stability of yoghurt. Acid and endogenous calcium can induce the formation of skimmed milk (SM)/LA double gels. However, the effect of acidification temperature on the formation and physical properties of SM/LA double gels has not been elucidated. In this study, temperature above and below the LA transition temperature (38 °C) were used as acidification temperatures, which adjusted the gelation sequence of SM and LA. The LA gel prior to the SM gel formed at acidification temperature of 37 °C, exhibiting the highest WHC and G′ among all samples. Moreover, SM/LA-37 double gels showed two networks: one was a porous network and the other was a dense network. By contrast, SM/LA mixtures acidified at 42 °C formed double networks during the cooling stage, and the previously formed SM gel hindered the formation of the LA gel. Consequently, SM/LA-42 double gels showed lower WHC and G′ compared with SM/LA-37 double gels. Overall, gelation sequence substantially affected the physical properties of SM/LA double gels. Our findings provide basis for adopting optimal methods to improve yoghurt quality and revealing the gelation mechanism involved in SM/LA double gels.
摘要:
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
通讯机构:
[Cao, FX ] C;Cent South Univ Forestry & Technol, Coll Chem & Chem Engn, Changsha 410004, Hunan, Peoples R China.;Hunan Agr Univ, Coll Hort, Changsha 410128, Hunan, Peoples R China.
摘要:
In this work, a robust "turn-on" NIR fluorescent probe Cx-Cys was constructed for cysteine detection and imaging in Arabidopsis thaliana. Specifically, a 1,8-naphthalimide-based NIR fluorophore was used as the signaling group, while the acrylate group served as the recognition moiety for cysteine as well as the fluorescence quenching group. The probe shows a remarkable NIR response toward cysteine in the infrared region (718 nm), and a large Stokes shift (103 nm). Cx-Cys displayed high sensitivity and selectivity to cysteine with low detection limits of 73 nM over other amino acids and bio-thiols. Impressively, it was applied to obtain images of Arabidopsis thaliana and enabled visualization of cysteine content changes under external stimulations in root tips in vivo. Cx-Cys was also used to monitor the dynamic changes of the cysteine pool after incubation in cysteine solutions.