版权说明 操作指南
首页 > 成果 > 详情

Automated Measurement of Field Crop Phenotypic Traits Using UAV 3D Point Clouds and an Improved PointNet++

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yao, Jiatong;Wang, Wei;Fu, Hongyu;Deng, Zhehong;Cui, Guoxian;...
作者机构:
[Yao, Jiatong; Deng, Zhehong; Cao, Xiaolan] College of Information and Intelligence, Hunan Agricultural University, Changsha, China
[Wang, Wei; Cui, Guoxian; She, Wei] College of Agriculture, Hunan Agricultural University, Changsha, China
[Fu, Hongyu] Hunan Cultivated Land and Agricultural Eco-Environment Institute,, Changsha, China
[Shuaibin, Wang; Wang, Dong] Technology Center, China Tobacco Hunan Industrial Co., Ltd,, Changsha, China
语种:
英文
关键词:
UAV remote sensing;3D point cloud;deep learning;phenotypic trait extraction;stem-leaf segmentation
期刊:
FRONTIERS IN PLANT SCIENCE
ISSN:
1664-462X
年:
2025
卷:
16
页码:
1654232
机构署名:
本校为第一机构
院系归属:
农学院
摘要:
Accurate acquisition of tobacco phenotypic traits is crucial for growth monitoring, cultivar selection, and other scientific management practices. Traditional manual measurements are time-consuming and labor-intensive, making them unsuitable for large-scale, high-throughput field phenotyping. The integration of 3D reconstruction and stem-leaf segmentation techniques offers an effective approach for crop phenotypic data acquisition. In this study, we propose a tobacco phenotyping method that combines unmanned aerial vehicle (UAV) remote sensing ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com