版权说明 操作指南
首页 > 成果 > 详情

Hausdorff dimension of sets with large products of consecutive partial quotients and small single partial quotients in continued fractions

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ding, Nan;Feng, Jing
通讯作者:
Feng, J
作者机构:
[Ding, Nan] Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410125, Peoples R China.
[Feng, Jing] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China.
[Feng, Jing] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Peoples R China.
[Feng, Jing] Univ Paris Est Creteil, LAMA UMR 8050, CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France.
通讯机构:
[Feng, J ] W
Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China.
Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Peoples R China.
Univ Paris Est Creteil, LAMA UMR 8050, CNRS, 61 Ave Gen Gaulle, F-94010 Creteil, France.
语种:
英文
关键词:
Continued fractions;Product of consecutive partial quotients;Hausdorff dimension
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
ISSN:
1078-0947
年:
2025
页码:
2650-2670
基金类别:
The first and second-named authors are supported by National Natural Science Foundation of China, Grant Nos: 12331005, 11901204 and 12271418.
机构署名:
本校为第一机构
摘要:
Let $ [a_1(x),a_2(x),\ldots,a_n(x),\ldots] $ be the continued fraction expansion of $ x\in [0,1) $ . The study of real numbers with their partial quotients obeying various forms leads to the following set $ \begin{equation*} \mathcal{E}_1(\Phi): = \left\{ x\in[0,1)\colon\ a_{n+1}(x)\geq\Phi(n)\; \text{for infinitely many}\ n\in\mathbb{N} \right\}. \end{equation*} $ The second largest product of consecutive partial quotients will be the obstacle to obtain the limit theorems of the sum of products of consecutive partial quotients in continued fractions, which leads to the following set $ \begin{...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com