版权说明 操作指南
首页 > 成果 > 详情

Coarse-to-fine lightweight meta-embedding for ID-based recommendations

认领
导出
Link by 中国知网学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang WANG;Haipeng LIU;Zeqian YI;Biao QIAN;Meng WANG
通讯作者:
Meng Wang
作者机构:
[Yang WANG; Haipeng LIU; Biao QIAN; Meng WANG] School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
College of Information and Intelligence, Hunan Agricultural University, Changsha, China
[Zeqian YI] School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China<&wdkj&>College of Information and Intelligence, Hunan Agricultural University, Changsha, China
通讯机构:
[Meng Wang] S
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
语种:
英文
关键词:
lightweight meta-embedding;coarse-to-fine learning;ID-based recommendations
期刊:
中国科学:信息科学(英文版)
ISSN:
1674-733X
年:
2025
卷:
68
期:
4
页码:
1-16
基金类别:
supported in part by Research Projects of National Natural Science Foundation of China (Grant Nos. U21A20470, 62172136, 72188101);
机构署名:
本校为其他机构
摘要:
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embeddings for users and items or employ compact embeddings to enhance reusability and reduce memory usage. However, these approaches consider only the coarse-grained aspects of embeddings, overlooking subtle semantic nuances. This limitation results in an adversarial degradation of meta-embedding performance, impeding the system’s ab...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com