版权说明 操作指南
首页 > 成果 > 详情

Machine-learning-aided hydrochar production through hydrothermal carbonization of biomass by engineering operating parameters and/or biomass mixture recipes

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Leng, Lijian;Zhou, Junhui;Zhang, Weijin;Chen, Jiefeng;Wu, Zhibin;...
通讯作者:
Yang, Zequn;Li, HL
作者机构:
[Zhou, Junhui; Peng, Haoyi; Li, HL; Yang, Zequn; Zhan, Hao; Li, Hailong; Yang, ZQ; Leng, Lijian; Chen, Jiefeng; Zhang, Weijin] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China.
[Yuan, Xingzhong; Leng, Lijian] Xiangjiang Lab, Changsha 410205, Hunan, Peoples R China.
[Wu, Zhibin] Hunan Agr Univ, Coll Resources & Environm, Changsha 410128, Hunan, Peoples R China.
[Xu, Donghai] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China.
[Yuan, Xingzhong] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China.
通讯机构:
[Yang, ZQ; Li, HL ] C
Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China.
语种:
英文
关键词:
Hydrochar;Hydrothermal carbonization;Machine learning;Wet torrefaction;Biomass;Optimization
期刊:
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY
ISSN:
1751-4223
年:
2024
卷:
288
页码:
129854
基金类别:
CRediT authorship contribution statement Lijian Leng: Conceptualization, Supervision, Writing – original draft, Writing – review & editing, Project administration, acquisition. Junhui Zhou: Data collection, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing. Weijin Zhang: Methodology, Writing – review & editing. Jiefeng Chen: Writing – review & editing. Zhibin Wu: Resources. Donghai Xu: Resources. Hao Zhan: Resources. Xingzhong Yuan: Writing – review & editing. Zhengyong Xu: Resources.
机构署名:
本校为其他机构
院系归属:
资源环境学院
摘要:
Hydrochar serves not only as a fuel source but also as a versatile carbon material that has found extensive application across various domains. The application performance of hydrochar, e.g., energy recovery and carbon stability, is substantially influenced by its mass yield, higher heating value (HHV), and compositions (C, H, O, N, S, and ash), so the prediction and engineering of these properties is promising. In this study, two machine learning algorithms, namely gradient boosting regression (GBR) and random forest (RF), were used to predict the hydrochar properties mentioned above. The GBR...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com