版权说明 操作指南
首页 > 成果 > 详情

Diffusion-Q Synergy (DQS): A Generative Approach to Policy Optimization via Denoised Action Spaces

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Ao;Zhu, Xinghui;Que, Haoyi
通讯作者:
Zhu, XH;Que, HY
作者机构:
[Zhu, Xinghui; Li, Ao] Hunan Agr Univ, Sch Informat Sci & Technol, 1 Nongda Rd, Changsha 410128, Peoples R China.
[Que, Haoyi] Shenzhen Polytech Univ, Sch Artificial Intelligence, 7098 Liuxian Blvd, Shenzhen 518055, Peoples R China.
通讯机构:
[Zhu, XH ] H
[Que, HY ] S
Hunan Agr Univ, Sch Informat Sci & Technol, 1 Nongda Rd, Changsha 410128, Peoples R China.
Shenzhen Polytech Univ, Sch Artificial Intelligence, 7098 Liuxian Blvd, Shenzhen 518055, Peoples R China.
语种:
英文
关键词:
reinforcement learning;diffusion models;diffusion policy;policy optimization
期刊:
Applied Sciences-Basel
ISSN:
2076-3417
年:
2025
卷:
15
期:
18
机构署名:
本校为第一且通讯机构
院系归属:
信息科学技术学院
摘要:
In this paper, we propose a novel algorithm that integrates diffusion models with reinforcement learning, called Diffusion-Q Synergy (DQS). The methodology formalizes an equivalence relationship between the iterative denoising process in diffusion models and the policy improvement mechanism in Markov Decision Processes. Central to this framework is a dual-learning mechanism: (1) a parametric Q-function is trained to evaluate noise prediction trajectories through temporal difference learning, effectively serving as a differentiable critic for action quality assessment; and (2) this learned Q-sc...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com