版权说明 操作指南
首页 > 成果 > 详情

A photovoltaic power multi-quantile forecasting model based on bidirectional temporal convolutional network and efficient channel attention mechanism

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Borui Zhang;Bo Liu*
通讯作者:
Bo Liu
作者机构:
[Borui Zhang; Bo Liu] College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
通讯机构:
[Bo Liu] C
College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
语种:
英文
期刊:
Electric Power Systems Research
ISSN:
0378-7796
年:
2026
卷:
252
页码:
112355
机构署名:
本校为第一且通讯机构
摘要:
As a representative uncertain renewable energy source, photovoltaic (PV) power generation is highly sensitive to meteorological conditions, posing significant challenges for microgrid operation and scheduling. To address the limitations of traditional forecasting methods in simultaneously achieving high prediction accuracy and robust uncertainty quantification, this study proposes a multi-quantile forecasting model integrating a Bidirectional Temporal Convolutional Network (BiTCN), Efficient Channel Attention (ECA), and Quantile Regression (QR). The model unifies point and interval forecasting...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com