The widespread application of multi-agent robotic systems in domains such as agricultural collaboration and automation has accentuated the challenges faced in seeking to achieve rapid synchronization and sustain high-performance control under conditions where velocity states remain unmeasurable. To relieve these challenges, a synchronization control framework is proposed for multi-agent systems, employing non-uniform sampling communication protocols. Initially, a state-variable transformation is applied to construct a composite Lyapunov function that integrates a sampling term. An explicit rel...