版权说明 操作指南
首页 > 成果 > 详情

Deep residual convolutional neural network based on hybrid attention mechanism for ecological monitoring of marine fishery

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Jiangxun;Zhang, Lei;Li, Yanfei;Liu, Hui
通讯作者:
Liu, H
作者机构:
[Liu, Hui; Liu, Jiangxun; Zhang, Lei] Cent South Univ, Inst Artificial Intelligence & Robot IAIR, Sch Traff & Transportat Engn, Key Lab Traff Safety Track,Minist Educ, Changsha 410075, Hunan, Peoples R China.
[Li, Yanfei] Hunan Agr Univ, Coll Engn, Changsha 410128, Hunan, Peoples R China.
通讯机构:
[Liu, H ] C
Cent South Univ, Inst Artificial Intelligence & Robot IAIR, Sch Traff & Transportat Engn, Key Lab Traff Safety Track,Minist Educ, Changsha 410075, Hunan, Peoples R China.
语种:
英文
关键词:
Attention mechanism;Convolutional neural network;Marine fishery;Residual module;Target detection
期刊:
Ecological Informatics
ISSN:
1574-9541
年:
2023
卷:
77
页码:
102204
基金类别:
This study is fully supported by the National Natural Science Foundation of China (Grant No. 52072412 ), the Changsha Science & Technology Project (Grant No. KQ1707017 ), the Hunan Province Science and Technology Talent Support Project (Grant No. 2020TJ-Q06 ).
机构署名:
本校为其他机构
院系归属:
工学院
摘要:
Understanding the ecological environment, population abundance, and growth status of marine organisms in the marine fishery is important to promote its sustainability. However, existing manual detection methods can cause some damage to marine ecology and are difficult to meet the demand for fast and accurate detection. In addition, light, shadows, and disturbances in the marine ecosystem can affect the effectiveness of intelligent detection methods. To address these problems, a deep residual convolutional neural network (DRCNN) based on hybrid attention mechanism (HAM) is proposed to detect ma...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com