版权说明 操作指南
首页 > 成果 > 详情

Real-Time Search Method for Large-Scale Regional Targets Based on Parallel Google S2 Algorithm

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Fan Wu;Qijie Feng;XiaoYong Tang
作者机构:
[XiaoYong Tang] College of Information Science and Technology, Hunan Agricultural University
[Fan Wu; Qijie Feng] College of Computer Science and Electronic Engineering, Hunan University
语种:
英文
关键词:
Spark Streaming, Kafka, Parallel Google S2, Big Data
年:
2019
页码:
1406-1413
会议名称:
2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
会议论文集名称:
2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
会议时间:
August 2019
会议地点:
Zhangjiajie, China
出版者:
IEEE
ISBN:
978-1-7281-2059-1
机构署名:
本校为第一机构
院系归属:
信息科学技术学院
摘要:
In recent years, with the rise of shared bicycles, shared vehicles and other moving objects, how to quickly find nearby objects has gradually become an urgent problem for people to travel. Aiming at the characteristics of fast, real-time and large data volume, this paper proposes a massive data real-time processing system based on Spark Streaming. The massive data generated in real time is sent to the Kafka cluster through the Flume NG cluster. The Spark platform analyzes the data in Kafka in real time, and saves the processed data to redis through our improved parallelized Google S2 algorithm...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com