摘要:
Cereal cyst nematodes are sedentary biotrophic endoparasites that secrete effector proteins into plant tissues to transit normal cells into specialized feeding sites and suppress plant defenses. To understand the function of nematode effectors in Heterodera avenae, here, we identified a calreticulin protein HaCRT1, which could suppress the cell death induced by Bax when expressed in Nicotiana benthamiana. HaCRT1 is synthetized in the subventral gland cells of pre-parasitic second-stage nematodes. Real-time PCR assays indicated that the expression of HaCRT1 was highest in parasitic second-stage juveniles. The expression of an HaCRT1-RFP fusion in N. benthamiana revealed that it was localized in the endoplasmic reticulum of the plant cell. The ability of H. avenae infecting plants was significantly reduced when HaCRT1 was knocked down by RNA interference in vitro. Arabidopsis thaliana plants expressing HaCRT1 were more susceptible than wild-type plants to Pseudomonas syringae. The induction of defense-related genes, PAD4, WRKY33, FRK1, and WRKY29, after treatment with flg22 was suppressed in HaCRT1-transgenic plants. Also, the ROS accumulation induced by flg22 was reduced in the HaCRT1-transgenic plants compared to wild-type plants. HaCRT1 overexpression increased the cytosolic Ca2+ concentration in A. thaliana. These data suggested that HaCRT1 may contribute to the pathogenicity of H. avenae by suppressing host basal defense.
摘要:
The existing form of ionizable organic contaminants (IOCs) could affect their adsorption characteristics to soil and biochar. In this study, 2 IOCs, namely, sulfadiazine and imazalil, were selected to study their adsorption by rice straw-derived biochar-amended soils, as well as the effect of pH and gallic acid on their adsorption. The results showed that the soil adsorption isotherms of the two ionizable organic contaminants could be fitted well by a linear equation and the Freundlich equation, and r(2) was more than 0.80. The adsorption coefficient (Kd) in the three kinds of soil ranged from 0.262 to 4.07Lkg(-1) for sulfadiazine and from 3.11 to 96.5Lkg(-1) for imazalil. After the addition of biochar, the adsorption of sulfadiazine and imazalil in the soil increased. The adsorption of sulfadiazine by biochar gradually decreased with the increase in pH; the adsorption of imazalil increased when the pH increased from 2 to 5 and then gradually decreased with increasing pH. Gallic acid enhanced the adsorption of the two IOCs to pure soil and biochar-amended soil.
摘要:
<jats:title>Abstract</jats:title><jats:p>The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to <jats:italic>Daphnia magna</jats:italic> in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L<jats:sup>−1</jats:sup> as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L<jats:sup>−1</jats:sup>, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH.</jats:p>
摘要:
The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92 % sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.
摘要:
In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.