摘要:
Simple Summary Fat deposition is essential for the productivity of livestock farming and is also of considerable importance for maintaining human health. Previous studies have provided a clue to explore the involvement of adenosine deaminase acting on RNA 1 (ADAR1) in adipogenesis. In this study, we confirmed that ADAR1 enhances the proliferation and suppresses the differentiation and apoptosis of porcine preadipocytes through over-expression and knockdown approaches. We also identify the genes and pathways that ADAR1 may affect in the regulation of preadipocyte proliferation. The findings provide novel insights that shed light on the molecular mechanisms underlying lipid accumulation.Abstract Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.
摘要:
The Ningxiang pig, one of the well-known Chinese native pig breeds, has the advantages of tender meat, high intramuscular fat (IMF) content, and roughage tolerance, compared to the commercial lean pig breeds. The genetic basis for complex traits in Ningxiang pigs has been previously studied through other genetic markers, such as Single Nucleotide Polymorphism (SNP), while the characteristics of copy number variation (CNV) and the selection signal have not been investigated yet. In this study, GGP 50 k genotyping data of 2242 Ningxiang pigs (NX) and 1137 Duroc pigs (Duroc) were involved in CNV atlas construction and selection signals identification. Annotations of genes and quantitative trait locus (QTLs) were performed on the target candidate regions, as follows: (1) 162 CNVs were detected in Ningxiang pigs, while 326 CNVs were detected in Duroc pigs, and there are 21 copy number variation regions (CNVRs) shared between them; (2) The CNVRs of Duroc are more abundant, with 192 CNVRs, accounting for 1.61% of the entire genome, while those of Ningxiang pigs only have 98 CNVRs, accounting for 0.49%; (3) The QTLs annotated on CNVs and selected regions of Ningxiang pigs were mainly associated with meat quality and fertility. In contrast, the Duroc QTLs' notes relate primarily to the carcass and immunity, and explain why they have a higher slaughter rate and immunity; (4) There is a presence of high-frequency acquired CNVs, specifically in Ningxiang pigs, with 24 genes significantly enriched in the sensory receptor-related pathway in this region; (5) Based on the CNVs atlas, candidate genes such as 3 inositol 1,4,5-triphosphate receptor, type 3 (ITPR3), forkhead box protein K2 (FOXK2), G-protein coupled estrogen receptor 1 (GPER1), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triosephosphate isomerase 1 (TPI1), and other candidate genes related to fat deposition and differentiation were screened. In general, this study improved our knowledge about copy number variation and selection signal information of Ningxiang pigs, which can not only further explain the genetic differences between Chinese native and Western commercial pig breeds, but also provide new materials for the analysis of the genetic basis of complex traits.
摘要:
<jats:p>This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages—30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)—we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.</jats:p>
作者机构:
[高宁; 闫煜博; 张跃博; 胡玉龙; 陈彦潼; 何俊; Shen, Shuo-Kai; 杨芳] College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China;[吴晓林] Council on Dairy Cattle Breeding, Bowie, MD 20716, USA;[吴晓林] Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;[汪加明] Hunan Xinwufeng Co., Ltd, Changsha 410005, China
摘要:
This study evaluated the effects of flavonoids from mulberry leaves (FML) on plasma biochemical indices, serum activities of lipid metabolism-related enzymes, fat morphology, fatty acid composition, and lipid metabolism in different adipose tissues of finishing pigs. We used 120 Chinese hybrid barrows of Berkshire and Bama mini-pigs with an average initial body weight of 45.11 +/- 4.23 kg. The pigs were randomly assigned to five treatment groups and fed a control diet based on corn, soybean meal, and wheat bran or a control diet supplemented with 0.02%, 0.04%, 0.08%, or 0.16% FML. Each experimental group had six replicates (pens), with four pigs per pen. After a 7-d adaptation period, the feeding trial was conducted for 58 d. Blood and adipose tissue samples were collected from 30 pigs (one pig per pen) at the end of the test. The results showed that FML supplementation significantly decreased the feed intake to body gain ratio, the plasma concentrations of total cholesterol and free fatty acids, and the serum activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (linear or quadratic effects, P < 0.05), and decreased the plasma triglyceride concentration (quadratic, P = 0.07). Increasing FML supplementation increased the average daily gain and serum activities of lipoprotein lipase (linear and quadratic effects, P < 0.05) and adipose triglyceride lipase (linear, P < 0.05). Dietary FML supplementation decreased the adipocyte area in the dorsal subcutaneous adipose (DSA) tissue of finishing pigs (linear, P = 0.05) and increased the adipocyte area in the visceral adipose tissue (quadratic, P < 0.01). Increasing FML supplementation decreased the C20:1 content in DSA, abdominal subcutaneous adipose, and visceral adipose tissues of finishing pigs (P < 0.05) and increased the C18:3n3 and n-3 PUFA contents (P < 0.05). The lipid metabolism genes were regulated by the PPAR gamma-LXR alpha-ABCA1 signaling pathway, and their expressions differed in different adipose tissues. These findings suggest that FML improved growth performance, regulated lipid metabolism, inhibited fat production, and improved fatty acid distribution in the adipose tissue of finishing pigs, thereby improving pig fat's nutritional quality and health value.
摘要:
Simple Summary: In this study, we conducted a comprehensive investigation of the fatty acid composition in Ningxiang pigs using a genome-wide association study. Our findings revealed a combination of previously reported and novel candidate genes associated with saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Notably, we identified significant single-nucleotide polymorphisms (SNPs) that are closely linked to specific fatty acids, and some of these genes explained substantial phenotypic variance. These noteworthy discoveries have the potential to significantly improve meat quality and fat deposition in Ningxiang pigs through targeted breeding approaches. Our research provides valuable insights into the intricate composition of fatty acids, thus offering practical implications for elevating meat quality and ultimately benefiting both the pig industry and consumers. The significance of this study is underscored by its potential to drive positive changes in society by promoting healthier and superior-quality pork products. Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang pigs. Our investigation yielded novel candidate genes linked to five saturated fatty acids (SFAs), four monounsaturated fatty acids (MUFAs), and five polyunsaturated fatty acids (PUFAs). Significant associations with SFAs, MUFAs, and PUFAs were found for 37, 21, and 16 SNPs, respectively. Notably, some SNPs have significant PVE, such as ALGA0047587, which can explain 89.85% variation in Arachidic acid (C20:0); H3GA0046208 and DRGA0016063 can explain a total of 76.76% variation in Elaidic Acid (C18:1n-9(t)), and the significant SNP ALGA0031262 of Arachidonic acid (C20:4n-6) can explain 31.76% of the variation. Several significant SNPs were positioned proximally to previously reported genes. In total, we identified 11 candidate genes (hnRNPU, CEPT1, ATP1B1, DPT, DKK1, PRKG1, EXT2, MEF2C, IL17RA, ITGA1 and ALOX5), six candidate genes (ALOX5AP, MEDAG, ISL1, RXRB, CRY1, and CDKAL1), and five candidate genes (NDUFA4L2, SLC16A7, OTUB1, EIF4E and ROBO2) associated with SFAs, MUFAs, and PUFAs, respectively. These findings hold great promise for advancing breeding strategies aimed at optimizing meat quality and enhancing lipid metabolism within the intramuscular fat (IMF) of Ningxiang pigs.
关键词:
Chinese herb;Xinyang black-feather hens;intestinal barrier function;microbiota;ultrafine powder
摘要:
<jats:sec><jats:title>Introduction</jats:title><jats:p>Chinese medicinal herbs play important roles in anti-inflammatory, antioxidant, and antibacterial activities. However, the effects of Chinese herb ultrafine powder (CHUP) on laying hens still need to be elucidated. Therefore, this study aimed to evaluate the effects of dietary CHUP supplementation on jejunal morphology, physical barrier function, and microbiota in laying hens.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A total of 576 Xinyang black-feather laying hens (300 days old) were randomly assigned into eight groups, with eight replicates per group and nine hens per replicate. The hens were fed a basal diet (control group) and a basal diet supplemented with 0.5% <jats:italic>Leonuri herba</jats:italic> (LH group), 0.25% <jats:italic>Ligustri lucidi fructus</jats:italic> (LF group), 0.25% <jats:italic>Taraxaci herba</jats:italic> (TH group), 0.5% LH + 0.25% LF (LH-LF group), 0.5% LH + 0.25% TH (LH-TH group), 0.25% LF + 0.25% TH (LF-TH group), and 0.5% LH + 0.25% LF + 0.25% TH (LH-LF-TH group), respectively, for 120 days.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The results showed that dietary LH-LF and LH-LF-TH supplementation increased (<jats:italic>p</jats:italic> &lt; 0.05) the jejunal villus height to crypt depth ratio of laying hens. Dietary LF-TH supplementation up-regulated jejunal <jats:italic>claudin-5</jats:italic> expression, while LH supplementation up-regulated jejunal <jats:italic>claudin-1</jats:italic> expression and increased the jejunal abundances of potentially beneficial bacteria related to short-chain fatty acids and bacteriocins production, such as <jats:italic>Blautia</jats:italic>, <jats:italic>Carnobacterium</jats:italic>, <jats:italic>Clostridiales</jats:italic>, and <jats:italic>Erysipelotrichales</jats:italic> (<jats:italic>p</jats:italic> &lt; 0.05). In addition, dietary LH supplementation enriched (<jats:italic>p</jats:italic> &lt; 0.05) the tetracycline biosynthesis, butirosin/neomycin biosynthesis, and D-arginine/D-ornithine metabolism, whereas steroid biosynthesis and limonene/pinene degradation were enriched (<jats:italic>p</jats:italic> &lt; 0.05) in the LH-LF and LH-LF-TH groups. Moreover, Spearman’s correlation analysis revealed the potential correlation between the abundance of the jejunal microbiota and jejunal morphology and the physical barrier function of laying hens.</jats:p></jats:sec><jats:sec><jats:title>Discussion</jats:title><jats:p>Collectively, these findings suggest that dietary CHUP supplementation could enhance the beneficial bacteria abundance, physical barrier function, and metabolic function associated with short-chain fatty acids and bacteriocins production. Moreover, combined supplementation of dietary CHUP showed better effects than the sole CHUP supplementation.</jats:p></jats:sec>
通讯机构:
[Yuebo Zhang] G;Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China<&wdkj&>College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China<&wdkj&>Author to whom correspondence should be addressed.
摘要:
Simple Summary Skeletal muscle is a crucial component of an animal's body. Its growth and development process are modified by a variety of regulatory factors and signaling pathways. It is reported that miR-708-5p is closely related to cancer, osteoporosis, and muscle development. However, the molecular mechanism of miR-708-5p-mediated regulation of myoblast proliferation and differentiation remains unclear. This research aims to investigate the function of miR-708-5p in the proliferation and differentiation of C2C12 myoblasts and analyze its target genes. After interference or overexpression of miR-708-5p, we found that overexpression of miR-708-5p inhibited myoblast proliferation and promoted C2C12 myoblast differentiation. A total of 253 target genes of miR-708-5p were identified. GO and KEGG pathway analysis suggested that these target genes were significantly enriched in terms related to muscle growth and development. Pik3ca, Pik3r3, and Irs1 were identified as the key target genes of miR-708-5p. These results deepen our understanding of the molecular mechanism of skeletal muscle development and provide a theoretical foundation for further exploring the mechanism of miR-708-5p-mediated regulation of skeletal muscle development. MicroRNAs (miRNAs) are key regulators involved in the myogenic process in skeletal muscles. miR-708-5p plays an important role in various biochemical and physiological processes, but its function in skeletal myogenesis remain unclear. In this study, we first explored the effects of miR-708-5p on C2C12 proliferation and differentiation by overexpression and interference experiments. Then, we predicted the target genes of miR-708-5p and analyzed their function. We found that miR-708-5p was gradually increased during myoblast differentiation. Overexpression of miR-708-5p significantly inhibited cell proliferation and promoted the differentiation of myoblasts. A total of 253 target genes were predicted using a bioinformatics approach. These genes were significantly enriched in muscle growth-related GO terms and KEGG pathways, such as actin filament organization, actin cytoskeleton organization, PI3K-Akt pathway, insulin pathway, and Jak-STAT pathway. Among them, Pik3ca, Pik3r3, and Irs1 were considered to be the key target genes of miR-708-5p. To sum up, miR-708-5p inhibited C2C12 cells proliferation and promoted C2C12 cells differentiation. Its target genes significantly enriched in GO terms and KEGG pathways related to the development and growth of muscle. Our results provided a basis for studies on the function and mechanism of miR-708-5p regulating skeletal muscle growth and development.
摘要:
The aim is to optimize the dimethylacetamide (DMA) straw freezing technology of Black silkies rooster semen through the handy patent equipment, screening the formula of freezing basic extender and optimizing the DMA addition method, and then by comparing the fertility of DMA straw frozen semen with the pellet frozen semen. After the DMA straw freezing technology is optimized, it is extended to the Youxian Partridge drake semen. The result showed that the frozen sperm motility of Lake and Ravie (LR) group is 64%, the fertility 49.57% and the hatchability 91.52%, all of which are superior to those of FEB, Beltsville Poultry Semen Extender (BPSE) and Lake (P < 0.05). The sperm motility of adding DMA stock solution is 59%, which is superior to adding DMA directly into diluted semen (P > 0.05). The fertility and hatchability of DMA straw group are 77.61% and 92.30%, respectively, and it is significantly higher than those in the pellet group (P < 0.01; P < 0.05). The fresh drake sperm motility of induction collection method is 71%, the massage collection method 61% and the frozen drake sperm motility of induction 33% while the massage 19%. The fertility of frozen drake semen group is 85.93%, while that of the fresh semen group is 88.17%. The frozen drake semen fertility of the highest batch is 93.8%. In conclusion, the world's advanced fertility of frozen semen can be obtained both in the chicken and drake through the optimized DMA straw freezing technology and the method of screening freeze-resistant individuals.