摘要:
Floating seedling cultivation technique is a novel seedling method in cotton and it provides an ideal model to study cotton growing under waterlogging stress. Morphological character and proteomic profile of the primary root from the seedling cultured by the new technology were evaluated in this study. Compared to seedlings cultured by the traditional method, the diameter of the taproot from floating technology is small at all five seedling stages from one-leaf stage to five-leaf stage. There are similar changes between the thickness of cortex and diameter of stele, which increased from the one- to the two-leaf stage but decreased from the two- to the five-leaf stage. At the one-leaf stage, the number and volume of mitochondria in the primary root-tip cells were less than those in the control. At the two-leaf stage, there was significantly less electron-dense material in the primary root-tip cells than those in the control group. From the one- to the two-leaf stage, the vacuole volume was significantly smaller than that in the control. Total 28 differentially expressed proteins were revealed from aquatic and control group roots of cotton seedlings at the three-leaf stage by two-dimensional electrophoresis, which included 24 up-regulated and four down-regulated proteins. The relative expression of the phosphoglycerate kinase (PGK) gene in aquatic roots increased from the one- to the four-leaf stage but declined rapidly from the four- to the five-leaf stage. The relative expression of the 14-3-3b gene tended to decrease from the one- to the five-leaf stage. The PGK and 14-3-3b genes were specifically expressed in the aquatic roots at the three-leaf stage. In brief, these changes induced waterlogging resistance in the aquatic roots of cotton seedlings in the floating nursery, thereby causing the roots to adapt to the aquatic environment, promoting the growth and development of cotton seedlings.
摘要:
<jats:title>Abstract</jats:title><jats:p>Most of the cotton bollworm-resistant genes applied in cotton are more than 20years and they all belong to <jats:italic>Cry1Ab/c</jats:italic> family, but the insect-resistant effects of <jats:italic>Cry5Aa</jats:italic> on cotton were rarely reported. The possible risk of resistance is increasing. The study synthesized a novel bollworm-resistant gene <jats:italic>Cry5Aa</jats:italic> artificially based on preferences of cotton codon. The new gene was transferred to cotton through the method of pollen tube pathway. The transgenic strains were identified by kanamycin test in field and laboratory PCR analysis. Meanwhile, an insect resistance test was conducted by artificial bollworm feeding with transgenic leaves and GK19 was used as a control in this study. Results showed that rate of positive transgenic strains with kanamycin resistance in the first generation (T1), the second generation (T2) and the third generation (T3) respectively were 7.76%, 73.1% and 95.5%. However, PCR analysis showed that the positive strain rate in T1, T2 and T3 were 2.35%, 55.8% and 94.5%, respectively. The resistant assay of cotton bollworm showed that the mortality rate of the second, third and fourth instar larva feed by the transgenic cotton leaves, were 85.42%, 73.35% and 62.79%, respectively. There was a significant difference between transgenic plant of <jats:italic>Cry5Aa</jats:italic> and GK19 in insect resistance. Finally, we also conducted the further analysis of gene expression patterns, gene flow and the effect on non-target pest in the study. The results showed that <jats:italic>Cry5Aa</jats:italic> gene had less environmental impact, and <jats:italic>Cry5Aa</jats:italic> has been transferred successfully and expressed stably in cotton. Therefore, the novel bollworm resistance gene can partially replace the current insect-resistance gene of Lepidoptera insects.</jats:p>