摘要:
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
摘要:
Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida , so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative. However, how to control A. trifida through interspecific competition and the underlying mechanisms are unclear. Here, we found that extracts from both the roots and leaves of the medicinal plant Sigesbeckia glabrescens suppressed the growth of A. trifida by reducing the plant height and biomass. The decrease in biomass may be explained by disruption of carbon and nitrogen metabolism. These disruptions are due to a significant decrease in the expression of genes related to nitrate absorption and transport in roots and a significant decrease in the expression of key genes related to photosynthesis and carbon fixation. Consequently, genes involved in sucrose synthesis are downregulated. In addition, increases in H 2 O 2 content and respiratory burst oxidase homologue ( RbohD ) gene expression suggested that A. trifida underwent oxidative stress caused by reactive oxygen species (ROS) bursts, resulting in apoptosis due to the significant upregulation of key genes associated with apoptotic pathways. Furthermore, we identified three main allelochemicals, coumarin, ferulic acid, and 5-aminolevulinic acid (5-ALA), in S. glabrescens extracts and revealed that the combination of these three compounds could suppress the growth of A. trifida seedlings. The phenotypes and transcriptome profiles of the seedlings treated with these chemicals were the same as those of the seedlings treated with the S. glabrescens extracts. Taken together, the results of this study revealed the mechanism underlying the toxic effects of S. glabrescens on A. trifida , providing a theoretical basis for the use of interspecific plant competition for invasive weed control and further application of S. glabrescens allelochemicals in weed management.
Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida , so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative. However, how to control A. trifida through interspecific competition and the underlying mechanisms are unclear. Here, we found that extracts from both the roots and leaves of the medicinal plant Sigesbeckia glabrescens suppressed the growth of A. trifida by reducing the plant height and biomass. The decrease in biomass may be explained by disruption of carbon and nitrogen metabolism. These disruptions are due to a significant decrease in the expression of genes related to nitrate absorption and transport in roots and a significant decrease in the expression of key genes related to photosynthesis and carbon fixation. Consequently, genes involved in sucrose synthesis are downregulated. In addition, increases in H 2 O 2 content and respiratory burst oxidase homologue ( RbohD ) gene expression suggested that A. trifida underwent oxidative stress caused by reactive oxygen species (ROS) bursts, resulting in apoptosis due to the significant upregulation of key genes associated with apoptotic pathways. Furthermore, we identified three main allelochemicals, coumarin, ferulic acid, and 5-aminolevulinic acid (5-ALA), in S. glabrescens extracts and revealed that the combination of these three compounds could suppress the growth of A. trifida seedlings. The phenotypes and transcriptome profiles of the seedlings treated with these chemicals were the same as those of the seedlings treated with the S. glabrescens extracts. Taken together, the results of this study revealed the mechanism underlying the toxic effects of S. glabrescens on A. trifida , providing a theoretical basis for the use of interspecific plant competition for invasive weed control and further application of S. glabrescens allelochemicals in weed management.
摘要:
The solitary bee Osmia excavata (Hymenoptera: Megachilidae) is a key pollinator managed on a large scale. It has been widely used for commercial pollination of fruit trees, vegetables, and other crops with high efficiency in increasing the crop seeding rate, yield, and seed quality in Northern hemisphere. Here, a high-quality chromosome-level genome of O. excavata was generated using PacBio sequencing along with Hi-C technology. The genome size was 207.02 Mb, of which 90.25% of assembled sequences were anchored to 16 chromosomes with a contig N50 of 9,485 kb. Approximately 186.83 Mb, accounting for 27.93% of the genome, was identified as repeat sequences. The genome comprises 12,259 protein-coding genes, 96.24% of which were functionally annotated. Comparative genomics analysis suggested that the common ancestor of O. excavata and Osmia bicornis (Hymenoptera: Megachilidae) lived 8.54 million years ago. Furthermore, cytochrome P450 family might be involved in the responses of O. excavata to low-temperature stress. Taken together, the chromosome-level genome assembly of O. excavata provides in-depth knowledge and will be a helpful resource for the pollination biology research.
作者机构:
[Bao, Xinlei; Huang, Sihui; Gong, YF; Yang, Han; Gong, Yifu] Ningbo Univ, Sch Marine Sci, Key Lab Marine Biotechnol Zhejiang Prov, Ningbo 315200, Peoples R China.;[Liu, Hao; Xu, Ruihao; Huang, Sihui; Li, Wangchang; Hang, Yuqing; Hang, YQ; Zhao, Yuxiang] Biotrans Technol Co LTD, Inst Bioengn, Shanghai 201500, Peoples R China.;[Liu, Hao; Xu, Ruihao; Huang, Sihui; Li, Wangchang; Hang, Yuqing; Hang, YQ; Zhao, Yuxiang] Biotrans Technol Co LTD, United New Drug Res & Dev Ctr, Changsha 410000, Peoples R China.;[Huang, Sihui] Hunan Agr Univ, Coll Plant Protect, Changsha 410000, Peoples R China.
通讯机构:
[Gong, YF ] N;[Hang, YQ; Zhao, YX ] B;Ningbo Univ, Sch Marine Sci, Key Lab Marine Biotechnol Zhejiang Prov, Ningbo 315200, Peoples R China.;Biotrans Technol Co LTD, Inst Bioengn, Shanghai 201500, Peoples R China.;Biotrans Technol Co LTD, United New Drug Res & Dev Ctr, Changsha 410000, Peoples R China.
摘要:
Phaeodactylum tricornutum is a marine diatom with significant biotechnological potential, particularly in producing high-value bioactive compounds such as fucoxanthin and unsaturated fatty acids, which possess significant pharmaceutical and nutraceutical properties. However, the naturally low yields of these compounds present a major challenge for large-scale production. Methyl jasmonic acid (MeJA), a plant-derived signaling molecule, has been shown to enhance the biosynthesis of these metabolites in P. tricornutum. While transcriptional regulation has been extensively studied, the role of post-transcriptional modifications, such as RNA editing, in mediating MeJA-induced metabolic changes remains largely unexplored. RNA editing can alter nucleotide sequences, leading to functional changes in gene expression and protein activity, thus providing a potential regulatory mechanism for enhanced biosynthesis of target metabolites. In this study, we investigated the role of RNA editing in Phaeodactylum tricornutum under methyl jasmonic acid (MeJA) treatment, focusing on its impact on the accumulation of bioactive compounds such as fucoxanthin and fatty acids. We conducted a comprehensive comparative analysis of RNA editing events across MeJA-treated and control groups. Our findings reveal that MeJA treatment induces significant variations in RNA editing levels, affecting key metabolic pathways. Notably, two genes, Lhcr10 (Phatr3_J16481) and Phatr3_J43665, were identified as potential contributors to increased RNA editing enzyme activity and to energy metabolism and fatty acid biosynthesis under MeJA treatment. These results provide a foundation for the discovery of molecular mechanisms underlying adaptive responses in P. tricornutum and highlight RNA editing as a critical regulatory mechanism in MeJA-induced metabolic reprogramming.
期刊:
Journal of Advanced Research,2025年 ISSN:2090-1232
通讯作者:
Xue, Wenxin;Pan, Lang;Shi, Li
作者机构:
[Wang, Mengyu; Wang, Hengji; Yi, Minghui; Zhao, Hui; Wang, Bingjie; Liao, Xiaolan; Tang, Zi] College of Plant Protection, Hunan Agricultural University, Changsha, China;[Wei, Peng] College of Plant Protection, Southwest University, Chongqing, China;[Xue, Wenxin] Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China. Electronic address: xuewenxin@hotmail.com;[Pan, Lang] College of Plant Protection, Hunan Agricultural University, Changsha, China. Electronic address: langpan@hunau.edu.cn;[Shi, Li] College of Plant Protection, Hunan Agricultural University, Changsha, China. Electronic address: shiliabc@126.com
通讯机构:
[Wenxin Xue] K;[Lang Pan; Li Shi] C;Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China. Electronic address:;College of Plant Protection, Hunan Agricultural University, Changsha, China. Electronic address:
摘要:
Introduction Long-term and extensive use of chemical pesticides has led to the development of resistance in many important agricultural pests. The mechanisms of resistance formation in pests are complex and variable, and unraveling the resistance mechanisms is the key to control resistant pests. Insect cuticle, as the first line of defense for insecticides, plays a non-negligible role in insecticide penetration resistance. Although penetration resistance is widespread in insects, the multiple molecular mechanisms that impede insecticide penetration are unclear, especially in Spodoptera litura .
Long-term and extensive use of chemical pesticides has led to the development of resistance in many important agricultural pests. The mechanisms of resistance formation in pests are complex and variable, and unraveling the resistance mechanisms is the key to control resistant pests. Insect cuticle, as the first line of defense for insecticides, plays a non-negligible role in insecticide penetration resistance. Although penetration resistance is widespread in insects, the multiple molecular mechanisms that impede insecticide penetration are unclear, especially in Spodoptera litura .
Objectives This study aims to reveal the molecular mechanisms of insecticide penetration resistance in S. litura .
This study aims to reveal the molecular mechanisms of insecticide penetration resistance in S. litura .
Methods The structure and thickness of cuticle were analyzed by TEM, and the role of cuticle in penetration resistance was determined by different application methods. The molecular mechanism of cuticular proteins overexpression was analyzed using RNAi, TEM, dual-luciferase assay and EMSA from cis - and trans -acting factors. In addition, the relationship between the chitin synthetic pathway and insecticide resistance was explored through enzyme activity, inhibitor assay, molecular docking and RNAi. Furthermore, the role of 20E in penetration resistance was analyzed.
The structure and thickness of cuticle were analyzed by TEM, and the role of cuticle in penetration resistance was determined by different application methods. The molecular mechanism of cuticular proteins overexpression was analyzed using RNAi, TEM, dual-luciferase assay and EMSA from cis - and trans -acting factors. In addition, the relationship between the chitin synthetic pathway and insecticide resistance was explored through enzyme activity, inhibitor assay, molecular docking and RNAi. Furthermore, the role of 20E in penetration resistance was analyzed.
Results The cuticle of the resistant populations was significantly thickened and accompanied by extrusion, which contributed significantly to indoxacarb resistance. Constitutive upregulation of trans -acting factor SlituFTZ-F1 co-regulates the overexpression of SlituCP26 with cis -acting elements in the SlituCP26 promoter (74 bp insertion), affecting the cuticle thickness‑mediated indoxacarb penetration resistance. Meanwhile, the overexpression of key genes in the chitin synthesis pathway increased the chitin content, which combined with SlituCP26 to participate in indoxacarb resistance. Moreover, 20E affected the SlituFTZ-F1 -mediated regulatory pathway and chitin biosynthesis pathway in indoxacarb resistance.
The cuticle of the resistant populations was significantly thickened and accompanied by extrusion, which contributed significantly to indoxacarb resistance. Constitutive upregulation of trans -acting factor SlituFTZ-F1 co-regulates the overexpression of SlituCP26 with cis -acting elements in the SlituCP26 promoter (74 bp insertion), affecting the cuticle thickness‑mediated indoxacarb penetration resistance. Meanwhile, the overexpression of key genes in the chitin synthesis pathway increased the chitin content, which combined with SlituCP26 to participate in indoxacarb resistance. Moreover, 20E affected the SlituFTZ-F1 -mediated regulatory pathway and chitin biosynthesis pathway in indoxacarb resistance.
Conclusion This study comprehensively elucidated the molecular mechanism of cuticle thickening mediating penetration resistance to indoxacarb and confirmed its existence in the field populations of S. litura .
This study comprehensively elucidated the molecular mechanism of cuticle thickening mediating penetration resistance to indoxacarb and confirmed its existence in the field populations of S. litura .
摘要:
Black-grass ( Alopecurus myosuroides ), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides . This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
Black-grass ( Alopecurus myosuroides ), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides . This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
摘要:
Aphis gossypii is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses. Three ApHsp70 genes were cloned from A. gossypii, and characterized their molecular features and expression profiles in response to temperature and insecticide stress. The deduced amino acid sequences of these proteins exhibited characteristic Hsp70 family signatures, and their tissue-specific expression patterns revealed their highest activity to be in the salivary glands under 35 °C. The temperature inductive assay further indicated that the expression of the three ApHsp70 genes was markedly upregulated under heat stress but not under cold shock. Furthermore, exposure to LC(25) and LC(50) concentrations of three insecticides triggered the upregulation of these ApHsp70 genes. The RNA interference (RNAi)-mediated suppression of ApHsp68 expression heightened cotton aphid's susceptibility to insecticides (acetamiprid and sulfoxaflor). Moreover, our study found that the sulfoxaflor-resistant strain of A. gossypii (Sul-R) displayed a higher survival rate compared with the sulfoxaflor-sensitive strain (Sul-S) under heat shock conditions. These results suggest that these three ApHsp70 genes play an essential role in response to both heat and insecticide stress.
摘要:
Cadmium (Cd) is a prevalent environmental pollutant in agricultural ecosystems, particularly within paddy ecosystems, is readily absorbed by rice and enter herbivorous insects through the food chain, thereby influencing the implementation of integrated pest management strategies. However, the effect and mechanisms of Cd exposure on the sensitivity of pests in paddy to insecticides remain unclear. Therefore, this study investigated the effects of Cd exposure on the fitness, insecticide sensitivity and symbiotic bacteria of Sogatella furcifera (Horváth) (white-backed planthopper, WBPH). Cd exposure did not affect the population growth of WBPH but significantly increased the sensitivity to three insecticides, nitenpyram, dinotefuran and etofenprox. Furthermore, Cd exposure reduced the diversity of symbiotic bacteria in WBPH, particularly decreasing the relative abundance of Acinetobacter, Klebsiella, Chryseobacterium and Pantoea, which were positively correlated with the survival rate of WBPH after Cd exposure and pesticide treatment. This indicates that Cd exposure may enhance insecticide sensitivity by disrupting the symbiotic bacteria equilibrium within WBPH. This study provides new insights into the symbiotic bacteria mediated increase in insecticide sensitivity due to heavy metal exposure, providing a foundation for utilizing compounds that disturb symbiotic bacteria balance in pest for pest control.
Cadmium (Cd) is a prevalent environmental pollutant in agricultural ecosystems, particularly within paddy ecosystems, is readily absorbed by rice and enter herbivorous insects through the food chain, thereby influencing the implementation of integrated pest management strategies. However, the effect and mechanisms of Cd exposure on the sensitivity of pests in paddy to insecticides remain unclear. Therefore, this study investigated the effects of Cd exposure on the fitness, insecticide sensitivity and symbiotic bacteria of Sogatella furcifera (Horváth) (white-backed planthopper, WBPH). Cd exposure did not affect the population growth of WBPH but significantly increased the sensitivity to three insecticides, nitenpyram, dinotefuran and etofenprox. Furthermore, Cd exposure reduced the diversity of symbiotic bacteria in WBPH, particularly decreasing the relative abundance of Acinetobacter, Klebsiella, Chryseobacterium and Pantoea, which were positively correlated with the survival rate of WBPH after Cd exposure and pesticide treatment. This indicates that Cd exposure may enhance insecticide sensitivity by disrupting the symbiotic bacteria equilibrium within WBPH. This study provides new insights into the symbiotic bacteria mediated increase in insecticide sensitivity due to heavy metal exposure, providing a foundation for utilizing compounds that disturb symbiotic bacteria balance in pest for pest control.
作者机构:
[Qiao Gao; Youzhi Li; Suijie Kuang; Yingjuan Sun; Jin Xue; Siyang Chen; Yan Tang; Hualiang He] Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China;[Youzhi Li; Wenbing Ding; Hongshuai Gao] National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China;[Wenbing Ding; Hongshuai Gao] Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China;[Lin Qiu] Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China. qiulin@hunau.edu.cn
通讯机构:
[Lin Qiu] H;Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
关键词:
Chilo Suppressalis;Ecdysone-induced protein 93F;Vitelline membrane protein 26Ab;Reproduction
摘要:
BACKGROUND: Ecdysone-induced protein 93F (E93, also known as Eip93F) plays a crucial role in the reproductive process of numerous insects. This study aims to delineate the function of E93 in Chilo suppressalis and elucidated the regulatory mechanism by which E93 influences the reproduction of C. suppressalis METHODS AND RESULTS: The results of the bioinformatics analysis indicate that C. suppressalis E93 shows the highest homology with E93 from Bombyx mori. We used qPCR to evaluate the expression profile of CsE93 from different developmental stages and tissues, revealed that CsE93 had the highest expression levels in the head, which peaked during the prepupal stage. Silencing CsE93 resulted in a significant reduction in yolk deposition and abnormal ovarian development. Moreover, the transcriptional levels of vitellogenin (Vg) and E74A, which are related to vitellogenesis and the 20E pathway, were significantly down-regulated in dsE93-treated female pupae. In addition, we identified Vitelline membrane protein 26Ab (VMP26Ab), a downstream gene associated with the integrity of the inner eggshell. The knockdown of VMP26Ab resulted in a significant reduction in the number of eggs and abnormal ovarian development, similar to RNAi E93. Finally, we identified an active promoter fragment (containing GAGA-containing motif) of CsVMP26Ab and demonstrated that CsE93 can bind to it. RESULTS: Our results indicate that CsE93 plays an important role in C. suppressalis reproduction. CsE93 modulates the CsVMP26Ab expression by acting on its promoter involve in the reproduction of C. suppressalis finally.
作者:
Long Lin;Xiaolong Shao;Yicheng Yang;Aprodisia Kavutu Murero;Limin Wang;...
期刊:
农业科学学报(英文),2025年24(1):23-35 ISSN:2095-3119
作者机构:
[Long Lin; Xiaolong Shao; Yicheng Yang; Aprodisia Kavutu Murero; Limin Wang; Guoliang Qian] Key Laboratory of Integrated Management of Crop Diseases and Pests/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;[Gaoge Xu; Yangyang Zhao] Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;[Sen Han; Zhenhe Su] Integrated Pest Management Innovation Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China;[Kangwen Xu] Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;[Mingming Yang] College of Plant Protection, Northwest A&F University, Yangling 712100, China
关键词:
Lysobacter enzymogenes;antimicrobial metabolites;loss of flagella;type IV secretion system
摘要:
Lysobacter enzymogenes is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitor bacteria make this species unique. These distinct features set L . enzymogenes apart from well-studied plant beneficial biocontrol agents, such as Bacillus and Pseudomonas . This review describes what takes L . enzymogenes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting with microbiome members via the bacterial-killing T4SS.
Lysobacter enzymogenes is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitor bacteria make this species unique. These distinct features set L . enzymogenes apart from well-studied plant beneficial biocontrol agents, such as Bacillus and Pseudomonas . This review describes what takes L . enzymogenes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting with microbiome members via the bacterial-killing T4SS.
摘要:
Barnyard grass, a pernicious weed thriving in rice fields, poses a significant challenge to agricultural productivity. Detection of barnyard grass before the four-leaf stage is critical for effective control measures. However, due to their striking visual similarity, separating them from rice seedlings at early growth stages is daunting using traditional visible light imaging models. To explore the feasibility of hyperspectral identification of barnyard grass and rice in the seedling stage, we have pioneered the DeepBGS hyperspectral feature parsing framework. This approach harnesses the power of deep convolutional networks to automate the extraction of pertinent information. Initially, a sliding window-based technique is employed to transform the one-dimensional spectral band sequence into a more interpretable two-dimensional matrix. Subsequently, a deep convolutional feature extraction module, ensembled with a bilayer LSTM module, is deployed to capture both global and local correlations inherent within hyperspectral bands. The efficacy of DeepBGS was underscored by its unparalleled performance in discriminating barnyard grass from rice during the critical 2-3 leaf stage, achieving a 98.18% accuracy rate. Notably, this surpasses the capabilities of other models that rely on amalgamations of machine learning algorithms and feature dimensionality reduction methods. By seamlessly integrating deep convolutional networks, DeepBGS independently extracts salient features, indicating that hyperspectral imaging technology can be used to effectively identify barnyard grass in the early stages, and pave the way for the development of advanced early detection systems.
摘要:
Mutagenesis breeding, combined with the application of corresponding herbicides to develop herbicide-resistant rice germplasm, provides great promise for the management of weeds and weedy rice. In this study, a topramezone-resistant rice mutant, TZR1, was developed from the indica rice line Chuangyu 9H (CY9H) through radiation mutagenesis and topramezone selection. Dose-response curves revealed that the resistance index of TZR1 to topramezone was 1.94-fold compared to that of CY9H. The resistance mechanism of TZR1 was not due to target-site resistance. This resistance could be reversed by a specific inhibitor of glutathione S-transferase (GST). The activity of antioxidant enzymes was analyzed. SNPs and Indels were detected using whole-genome resequencing; differentially expressed genes were identified through RNA sequencing. Then, they underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Key candidate genes associated with topramezone resistance were validated via a real-time quantitative PCR assay. Five GST genes, two UDP-glycosyltransferase genes, and three ATP-binding cassette transporter genes were identified as potential contributors to topramezone detoxification in TZR1. Overall, these findings suggest that GST enzymes possibly play an important role in TZR1 resistance to topramezone. This study will provide valuable information for the scientific application of 4-hydroxyphenylpyruvate dioxygenase inhibitors in paddy fields in future.
摘要:
The antifungal targets of the new fungicide N-(naphthalen-1-yl)-phenazine-1-carboxamide (NNPCN) are still incomplete, limiting its application. To identify potential new targets of NNPCN and facilitate target hunting, a suite of techniques was employed to conduct experiments on Rhizoctonia solani. Nine potential targets were identified, exhibiting strong binding affinity to NNPCN, as indicated by binding free energies below -100.000 kJ/mol. Notably, pectin lyase, glycosyl hydrolase, fumarate transporter, and cytochrome monooxygenase showed exceptionally strong binding. The mRNA expression analysis revealed significant downregulation in certain target genes: E3 ubiquitin ligase (AG1IA_02506), aldehyde dehydrogenase (AG1IA_03762), fumarate transporter (AG1IA_03944), and pectin lyase (AG1IA_03046) decreased by 42%, 66%, 83%, and 69%, respectively, while other key genes were upregulated. Pectin lyase protein was obtained through prokaryotic expression at 0.4 mg/mL concentration. A novel thiobarbituric acid test system verified pectin lyase as a potential NNPCN target, with the enzyme activity multiple being only 0.169 after NNPCN treatment. These findings enhance our understanding of NNPCN's mode of action and could guide its improved application.
摘要:
Two heterocyclic sesquiterpenoid oligomers (1, 2) and four previously undescribed seco-pseudoguaianolide derivatives (3−6) were isolated from the inflorescence of Ambrosia artemisiifolia. Ambrosiadimer A (1) is an unprecedented dimer featuring a hexahydropyrrolizine core scaffold and two pseudoguaianolide units. Ambrosiatrimer A (2) is a trimer formed from three pseudoguaianolide units via a pyrrolidine ring. The structures and absolute configurations of these compounds were determined through NMR, MS, and Cu Kα X-ray crystallographic analysis. A plausible cycloaddition reaction was proposed for 1 and 2. Moreover, compounds 2 and 7 exhibited moderate cytotoxicities in human cancer cell lines, with IC50 values ranging from 7.22 to 27.45 μM and 9.32–33.45 μM, respectively.
Two heterocyclic sesquiterpenoid oligomers (1, 2) and four previously undescribed seco-pseudoguaianolide derivatives (3−6) were isolated from the inflorescence of Ambrosia artemisiifolia. Ambrosiadimer A (1) is an unprecedented dimer featuring a hexahydropyrrolizine core scaffold and two pseudoguaianolide units. Ambrosiatrimer A (2) is a trimer formed from three pseudoguaianolide units via a pyrrolidine ring. The structures and absolute configurations of these compounds were determined through NMR, MS, and Cu Kα X-ray crystallographic analysis. A plausible cycloaddition reaction was proposed for 1 and 2. Moreover, compounds 2 and 7 exhibited moderate cytotoxicities in human cancer cell lines, with IC50 values ranging from 7.22 to 27.45 μM and 9.32–33.45 μM, respectively.
摘要:
The whitefly Bemisia tabaci (Hemiptera: Gennadius) is a notorious and highly polyphagous agricultural pest that is well known for its ability to transmit a wide range of serious plant pathogenic viruses. The field populations of B. tabaci in some areas have developed resistance to thiamethoxam. We found that high expression of CYP6EM1 can enhance the resistance of B. tabaci to dinotefuran. It is unclear whether CYP6EM1 is involved in the resistance of B. tabaci to the same neonicotinoid pesticide, thiamethoxam. The results of the present study demonstrated that the expression of CYP6EM1 could be induced within 9 h after the exposure of B. tabaci adults to thiamethoxam. Molecular docking analyses, with a binding energy of −6.13 cal/mol, revealed a strong binding affinity between thiamethoxam and the CYP6EM1 protein, implying that CYP6EM1 may be involved in thiamethoxam resistance. Compared with that in the susceptible strain, the mRNA expression level of the CYP6EM1 gene was significantly greater in thiamethoxam-resistant strains (R #1 , 9.93-fold, P = 0.0008; R #2 , 40.43-fold, P = 0.0013; R #3 , 27.40-fold, P = 0.0002; R #4 , 21.63-fold, P = 0.0003 and R #5 , 28.65-fold, P = 0.0006). Loss and gain of function studies in vivo were performed via RNA interference and transgenic expression in Drosophila melanogaster , and the results confirmed the role of CYP6EM1 in conferring such resistance. An in vitro metabolism assay revealed that CYP6EM1 directly metabolized 15.60 % of thiamethoxam. This study provides solid evidence for the critical role of CYP6EM1 in the metabolism of thiamethoxam, which contributes to resistance. Our work provides a deeper understanding of the mechanism underlying neonicotinoid resistance and contributes valuable insights for the sustainable management of global pests such as whiteflies.
The whitefly Bemisia tabaci (Hemiptera: Gennadius) is a notorious and highly polyphagous agricultural pest that is well known for its ability to transmit a wide range of serious plant pathogenic viruses. The field populations of B. tabaci in some areas have developed resistance to thiamethoxam. We found that high expression of CYP6EM1 can enhance the resistance of B. tabaci to dinotefuran. It is unclear whether CYP6EM1 is involved in the resistance of B. tabaci to the same neonicotinoid pesticide, thiamethoxam. The results of the present study demonstrated that the expression of CYP6EM1 could be induced within 9 h after the exposure of B. tabaci adults to thiamethoxam. Molecular docking analyses, with a binding energy of −6.13 cal/mol, revealed a strong binding affinity between thiamethoxam and the CYP6EM1 protein, implying that CYP6EM1 may be involved in thiamethoxam resistance. Compared with that in the susceptible strain, the mRNA expression level of the CYP6EM1 gene was significantly greater in thiamethoxam-resistant strains (R #1 , 9.93-fold, P = 0.0008; R #2 , 40.43-fold, P = 0.0013; R #3 , 27.40-fold, P = 0.0002; R #4 , 21.63-fold, P = 0.0003 and R #5 , 28.65-fold, P = 0.0006). Loss and gain of function studies in vivo were performed via RNA interference and transgenic expression in Drosophila melanogaster , and the results confirmed the role of CYP6EM1 in conferring such resistance. An in vitro metabolism assay revealed that CYP6EM1 directly metabolized 15.60 % of thiamethoxam. This study provides solid evidence for the critical role of CYP6EM1 in the metabolism of thiamethoxam, which contributes to resistance. Our work provides a deeper understanding of the mechanism underlying neonicotinoid resistance and contributes valuable insights for the sustainable management of global pests such as whiteflies.
摘要:
Recent metagenomic studies have identified a vast number of viruses. However, the systematic assessment of the true genetic diversity of the whole virus community on our planet remains to be investigated. Here, we explored the genome and protein space of viruses by simulating the process of virus discovery in viral metagenomic studies. Among multiple functions, the power function was found to best fit the increasing trends of virus diversity and was, therefore, used to predict the genetic space of viruses. The estimate suggests that there are at least 8.23e+08 viral operational taxonomic units and 1.62e+09 viral protein clusters on Earth when assuming the saturation of the virus genetic space, taking into account the balance of costs and the identification of novel viruses. It is noteworthy that less than 3% of the viral genetic diversity has been uncovered thus far, emphasizing the vastness of the unexplored viral landscape. To saturate the genetic space, a total of 3.08e+08 samples would be required. Analysis of viral genetic diversity by ecosystem yielded estimates consistent with those mentioned above. Furthermore, the estimate of the virus genetic space remained robust when accounting for the redundancy of sampling, sampling time, sequencing platform, and parameters used for protein clustering. This study provides a guide for future sequencing efforts in virus discovery and contributes to a better understanding of viral diversity in nature.IMPORTANCEViruses are the most abundant and diverse biological entities on Earth. In recent years, a large number of viruses have been discovered based on sequencing technology. However, it is not clear how many kinds of viruses exist on Earth. This study estimates that there are at least 823 million types of viruses and 1.62 billion types of viral proteins. Remarkably, less than 3% of this large diversity has been uncovered to date. These findings highlight the enormous potential for discovering new viruses and reveal a significant gap in our current understanding of the viral world. This study calls for increased attention and resources to be directed toward viral discovery and metagenomics and provides a guide for future sequencing efforts, enhancing our knowledge of viral diversity in nature for ecology, biology, and public health.